Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Immunol ; 6(62)2021 08 10.
Article in English | MEDLINE | ID: covidwho-1352519

ABSTRACT

To understand how a protective immune response against SARS-CoV-2 develops over time, we integrated phenotypic, transcriptional and repertoire analyses on PBMCs from mild and severe COVID-19 patients during and after infection, and compared them to healthy donors (HD). A type I IFN-response signature marked all the immune populations from severe patients during the infection. Humoral immunity was dominated by IgG production primarily against the RBD and N proteins, with neutralizing antibody titers increasing post infection and with disease severity. Memory B cells, including an atypical FCRL5+ T-BET+ memory subset, increased during the infection, especially in patients with mild disease. A significant reduction of effector memory, CD8+ T cells frequency characterized patients with severe disease. Despite such impairment, we observed robust clonal expansion of CD8+ T lymphocytes, while CD4+ T cells were less expanded and skewed toward TCM and TH2-like phenotypes. MAIT cells were also expanded, but only in patients with mild disease. Terminally differentiated CD8+ GZMB+ effector cells were clonally expanded both during the infection and post-infection, while CD8+ GZMK+ lymphocytes were more expanded post-infection and represented bona fide memory precursor effector cells. TCR repertoire analysis revealed that only highly proliferating T cell clonotypes, which included SARS-CoV-2-specific cells, were maintained post-infection and shared between the CD8+ GZMB+ and GZMK+ subsets. Overall, this study describes the development of immunity against SARS-CoV-2 and identifies an effector CD8+ T cell population with memory precursor-like features.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Host-Pathogen Interactions/immunology , Immunophenotyping , SARS-CoV-2/immunology , Transcriptome , Adult , Aged , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , COVID-19/virology , Cell Plasticity/genetics , Cell Plasticity/immunology , Clonal Evolution/immunology , Female , Gene Expression Profiling , Humans , Immunoglobulin Isotypes/immunology , Immunologic Memory , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Count , Male , Middle Aged , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
2.
Eur J Immunol ; 52(1): 109-122, 2022 01.
Article in English | MEDLINE | ID: covidwho-1332967

ABSTRACT

Growing evidence suggests that conventional dendritic cells (cDCs) undergo aberrant maturation in COVID-19, which negatively affects T-cell activation. The presence of effector T cells in patients with mild disease and dysfunctional T cells in severely ill patients suggests that adequate T-cell responses limit disease severity. Understanding how cDCs cope with SARS-CoV-2 can help elucidate how protective immune responses are generated. Here, we report that cDC2 subtypes exhibit similar infection-induced gene signatures, with the upregulation of IFN-stimulated genes and IL-6 signaling pathways. Furthermore, comparison of cDCs between patients with severe and mild disease showed severely ill patients to exhibit profound downregulation of genes encoding molecules involved in antigen presentation, such as MHCII, TAP, and costimulatory proteins, whereas we observed the opposite for proinflammatory molecules, such as complement and coagulation factors. Thus, as disease severity increases, cDC2s exhibit enhanced inflammatory properties and lose antigen presentation capacity. Moreover, DC3s showed upregulation of anti-apoptotic genes and accumulated during infection. Direct exposure of cDC2s to the virus in vitro recapitulated the activation profile observed in vivo. Our findings suggest that SARS-CoV-2 interacts directly with cDC2s and implements an efficient immune escape mechanism that correlates with disease severity by downregulating crucial molecules required for T-cell activation.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , Lymphocyte Activation , SARS-CoV-2/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL